Publication: Safe Reinforcement Learning: Providing Task-Agnostic Reach-Avoid Safety Constraints for Drone Deployment
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Drones are increasingly employed in critical applications, yet ensuring their safe operation in dynamic and unpredictable environments remains a challenge. This thesis examines the use of reach-avoid reinforcement learning (RL) for developing a task-agnostic safety filter for drones, with a focus on theoretical guarantees, practical applications, and future directions. By integrating safety constraints directly into the learning process, reach-avoid RL offers a robust and scalable framework for navigating the complexities of real-world safety scenarios. The reach-avoid safety filter, in combination with deep reinforcement learning and game-theoretic approaches, offers a feasible method for safe reinforcement learning across a range of tasks and environments in drone deployment.