Publication: Wireless Actuation of Self Assembling Kresling Robots
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis presents the design and implementation of a magnetically actuated Kresling robot capable of rolling locomotion, bistable folding transitions, and modular self-assembly. Leveraging the geometric properties of the Kresling structure and inplane magnetized plates, the system responds to uniform magnetic fields generated by a triple-axis Helmholtz coil. Two design iterations were developed—one using silicone-neodymium composites, and another with permanent magnets for improved control. Real-time tracking via ArUco markers and color segmentation enables visionbased pose estimation. Analytical models identify optimal torque conditions for state transitions, and experiments validate consistent actuation and successful magnetic docking between units. This work demonstrates the feasibility of scalable, untethered origami robots, with future potential for autonomous control and reconfigurable soft robotic systems.