Publication: Direct to the Red Planet? The Viability of Human Mars Missions Without Lunar Proving Grounds
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Human space exploration represents the culmination of the best of what our world has to offer—scientific and technological capability walking hand-in-hand with the human drive to explore and understand. Mars, the closest and most similar neighboring planet to Earth, has long been a source of inspiration for both science fiction and scientific advancement. It is the first logical target for investigating the presence of life on other planets and launching an era of interplanetary human existence. Designs for crewed Mars missions have long been tied to development of technology and operational capabilities on and around the Moon, but some of the aerospace community has historically been divided on the role the Moon should play in the development of crewed Mars mission architecture. This thesis explores the viability of executing a crewed mission to Mars without significant prior development of technology and operational capabilities on and around the Moon. Current prominent Mars mission architectures are compared and contrasted, technological and knowledge gaps are identified, and the necessity of the lunar prerequisites is evaluated. This paper compares the mission architectures of Mars Direct, NASA’s Design Reference Architecture 5.0, NASA's System Analysis Cycle 2021, SpaceX’s Starship architecture, and the preliminary architecture discussions of NASA’s Moon to Mars program. Commonalities of the prominent architectures are identified. Sub-architectures are then reviewed, including: entry, descent, and landing systems; ascent systems and in situ resource utilization; life support systems; communication considerations; surface power systems; and crew health and performance. The extent to which the Moon serves as a beneficial "proving ground" for the development of these areas is evaluated and discussed, ultimately determining the extent to which creating a robust, feasible, and safe crewed Mars mission architecture depends on prior development in the lunar domain.