Princeton University Users: If you would like to view a senior thesis while you are away from campus, you will need to connect to the campus network remotely via the Global Protect virtual private network (VPN). If you are not part of the University requesting a copy of a thesis, please note, all requests are processed manually by staff and will require additional time to process.
 

Publication:

A Computational Design Framework for Hydrofoil Design Applied to the International Moth

No Thumbnail Available

Files

Waldman_MAE_Thesis_FileCopy.pdf (11.46 MB)

Date

2025-04-23

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Journal Issue

Abstract

The International Moth is a small racing sailboat that can reach top speeds of 35 knots (18 m/s), due to its use of hydrofoils, which lift the entire hull clear of the free surface. The hydrofoils replace the hull as the primary generators of hydrodynamic forces within the vessel system, and in turn, heavily drive the overall performance of the vessel. Optimizing the shape and planform of the foils is a key to achieving race-winning designs. However, hydrofoiling sailboats are highly coupled systems that operate in two simultaneous fluid media, and a change in foil configuration can have cascading effects on the overall vessel state. Thus, a design framework is formulated that allows foil designs to be evaluated within a 6 degree of freedom velocity prediction program (VPP). The framework integrates gradient-based shape optimization tools in 2 and 3 dimensions. Evaluation of the framework demonstrates functionality for design optimization independent of the VPP, but the presented approach to modeling hydrodynamic forces within the VPP requires improvement in order to produce meaningful results that can inform design decisions.

Description

Keywords

Citation