Publication: Design and Aerodynamic Optimization
of a Rear Wing with a Drag Reduction
System for a Formula Hybrid Racecar
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis focuses on the design of a two-element rear wing with a driver-actuated drag reduction system (DRS) for an electric Formula Student racecar. A physical design space is first defined around Princeton Racing Electric’s MK3 car and brief vehicle dynamics calculations are done to establish a minimum downforce requirement for tested conditions in the Formula Hybrid Electric competition. High-lift, low Reynold’s number airfoils are modified to be compliant with the Formula Hybrid competition rules and analyzed initially in Xfoil. This is followed by two- and three-dimensional CFD analyses using Fidelity Pointwise for meshing and ANSYS Fluent for flow simulation and analysis. These simulations inform the optimal geometric configuration of the two wing elements and endplates to maximize the downforce/drag ratio under the analyzed conditions. The DRS design is informed by further CFD analysis and is implemented as an electromechanical system capable of being switched between high downforce and low drag configurations where needed to achieve the fastest lap times. The final rear wing design is capable of producing 128.5 N of downforce, 96% above the calculated requirement, while reducing drag by 83% when the DRS is activated. The thesis presents a finalized wing geometry with measurements, highlights and discusses general aerodynamic trends, and presents opportunities for further study and improvement on the design.