Princeton University Users: If you would like to view a senior thesis while you are away from campus, you will need to connect to the campus network remotely via the Global Protect virtual private network (VPN). If you are not part of the University requesting a copy of a thesis, please note, all requests are handled manually by staff and will require additional time to process.
 

Publication:

Blood Glucose Prediction and Control for Type I Diabetes Management: A Machine Learning Approach

dc.contributor.advisorAkrotirianakis, Ioannis
dc.contributor.authorDantzler, Aaron
dc.date.accessioned2025-08-06T17:13:12Z
dc.date.available2025-08-06T17:13:12Z
dc.date.issued2025-04-09
dc.description.abstractType I Diabetes is a chronic disease in which patients cannot make insulin or make very little insulin to regulate their blood glucose. It affects over 1.7 million adults in the United States. People with Type I Diabetes are reliant on taking insulin every day, and recently insulin pumps and specifically Automated Insulin Delivery (AID) systems have revolutionized diabetes care, making treatment easier and more effective. There are three components needed for an AID system: a Continuous Glucose Monitor which relates patient blood glucose, an Insulin Pump which infuses insulin into the body, and an algorithm which translates information from the first two components to an amount of insulin necessary to keep blood glucose in the target range. Our focus will be on the last component. First, this thesis will provide an overview of machine learning techniques for blood glucose prediction on the novel DiaTrend dataset (2023) which has not been extensively studied before (although research on machine learning models has been applied to previous datasets). Our work finds that adding complexity to our model only barely improves performance and does not justify longer run times and less interpretable results. Rather, we recommend a simple Autoregressive time series model which reaches similar impressive performance to the rest of our models while being simpler for healthcare providers to interpret. In the second part of the thesis, we propose two new AID algorithms which utilize our Autoregressive model: the Threshold Controller and IOB Controller. Rather than a PID or MPC approach, these algorithms rely on a set of simple heuristics similar to what an actual patient would use. We find that in a stressful scenario, these controllers are able to improve time in Target Range by up to 12% more than the leading Open Source OpenAPS oref0 algorithm, while providing safety by mitigating low blood glucose. This work lays the foundation for researchers and healthcare providers to implement new AID algorithms which utilize a combination of machine learning models and patient-based heuristics.
dc.identifier.urihttps://theses-dissertations.princeton.edu/handle/88435/dsp01qj72pb59h
dc.language.isoen_US
dc.titleBlood Glucose Prediction and Control for Type I Diabetes Management: A Machine Learning Approach
dc.typePrinceton University Senior Theses
dspace.entity.typePublication
dspace.workflow.startDateTime2025-04-09T20:07:56.099Z
pu.contributor.authorid920276535
pu.date.classyear2025
pu.departmentOps Research & Financial Engr

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Aaron Dantzler Thesis Final.pdf
Size:
3.97 MB
Format:
Adobe Portable Document Format
Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
100 B
Format:
Item-specific license agreed to upon submission
Description:
Download