Publication: Analysis of the Use of Reinforced Polyethylene in Transparent Roof Design
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
With global warming induced rising temperatures heavily affecting populations in the global South, it is becoming increasingly important that low-cost and energy efficient methods are developed to cool structures. Passive radiative coolers are an ideal solution because they cool without an external energy source and are able to achieve subambient internal temperatures. However, the extent of internal cooling is limited to how low of a temperature the passive radiative cooling surface is able to reach. Ideally, internal heat would dissipate without a barrier—most commonly a roof—and escape to space through the atmosphere’s longwave infrared window. Polyethylene is a commonly available and low-cost plastic with high transmittance in the longwave infrared spectrum, making it ”transparent” in the range of 8-13µm. However, it does not possess mechanical properties that make it suitable for use as a building material. This thesis explored the thermal performance of various types of polyethylene in a thermally transparent roof design. Reinforcement for the polyethylene and applications of these designs at large scales was also studied.