Princeton University users: to view a senior thesis while away from campus, connect to the campus network via the Global Protect virtual private network (VPN). Unaffiliated researchers: please note that requests for copies are handled manually by staff and require time to process.
 

Publication:

Laser Ablation Propulsion in the Martian Environment

datacite.rightsrestricted
dc.contributor.advisorMikhailova, Julia
dc.contributor.authorCoulibaly Sylla, Med
dc.date.accessioned2025-08-14T13:23:19Z
dc.date.available2025-08-14T13:23:19Z
dc.date.issued2025-04-23
dc.description.abstractMars exploration is governed by a ruthless mass-ledger: every kilogram of ascent propellant ferried from Earth displaces payload or science return. Laser-ablation propulsion (LAP) addresses this constraint by transferring energy remotely. A laser mounted on a lander or orbiter delivers nanosecond pulses to a small pad on the vehicle; the pad ejects a high-velocity plasma plume, and the recoil produces thrust while the power plant stays off-board. This thesis quantifies LAP performance for the first time under Martian ambient (600 Pa, 210 K CO₂). A coupled thermal–mechanical model implemented in ANSYS Mechanical APDL tracks crater evolution, phase explosion, and impulse generation for polytetrafluoroethylene (PTFE), carbon-fiber composite, and basaltic/regolith ablators. Parametric sweeps over 1–10 J pulse energy and 50–200 µm spot diameter predict momentum-coupling coefficients up to (4.2 ± 0.3) × 10⁻⁵ N·s·J⁻¹ and specific impulse 900–3200 s. These figures exceed chemical engines in propellant efficiency and encroach on Hall-thruster territory while retaining orders-of-magnitude higher thrust-to-mass because the laser mass is external. Mission-level scaling indicates a 500 kW orbital fibre-laser can loft a 50 kg sample-return canister to 1.2 km with <15% pad mass, cutting Earth-launch mass by ~30% relative to methane/LOX ascent. Pulses shorter than 20 ns favor plasma-dominated ablation and maximum specific impulse (I_sp); pulses around 50 ns maximize the momentum-coupling coefficient (C_m) for hopper-scale thrust. A hybrid composite–regolith pad is proposed to reconcile coupling efficiency with in-situ manufacturability. In the future, laboratory validation can be done using a torsional thrust stand and gated schlieren plume imaging, after which computational fluid dynamics can be embedded to capture dusty-gas entrainment. By mapping the material–pulse design space and demonstrating a credible mass advantage, this work positions externally powered LAP as the missing middle ground between high-thrust chemical rockets and high-I_sp electric thrusters—enabling agile surface mobility and lightweight ascent for the next generation of Mars missions.
dc.identifier.urihttps://theses-dissertations.princeton.edu/handle/88435/dsp01h702q9845
dc.language.isoen_US
dc.titleLaser Ablation Propulsion in the Martian Environment
dc.typePrinceton University Senior Theses
dspace.entity.typePublication
dspace.workflow.startDateTime2025-04-28T23:11:51.805Z
pu.contributor.authorid920250457
pu.date.classyear2025
pu.departmentMechanical & Aerospace Engr

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MAE_422___Senior_Thesis-1.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format
Download

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
100 B
Format:
Item-specific license agreed to upon submission
Description:
Download