Publication: Molybdenum Catalysts for the Asymmetric Hydrogenation of Naphthalene
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
There is an increasing need for sp3 carbons in industrial and pharmaceutical sectors. A higher sp3 content can be achieved via hydrogenation reactions that require catalysts with high chemo- and enantioselectivities, typically based on precious metals. Previous work in the Chirik group has developed pre-catalysts of oxazoline imino(pyridine) (OIP) and pyridine (diimine) (PDI) ligand frameworks based on the earth-abundant metal molybdenum. This work aims to integrate features of both PDI and OIP catalysts into the PDI ligand framework for the asymmetric hydrogenation of naphthalene. A pathway for the ligand synthesis of C1-symmetric PDI ligand was developed. C1- and C2-symmetric PDI(Mo)COD pre-catalysts were synthesized, and their catalytic activity was evaluated for 2,6- substituted naphthalene. Results revealed that the C1- and C2-symmetric 4-tBu-((S)-Cy,MePDI)Mo(COD) were active hydrogenation catalysts for 2,6-dimethylnaphthalene, and selective for the partially reduced product. While the C2-symmetric catalyst induced no enantioselectivity, the C1-symmetric 4-tBu-((S)-Cy,MePDI)Mo(COD) achieved an enantiomeric excess of 13%. Preliminary work has been done on developing C1-symmetric PDI ligands substituted with chiral anilines to increase enantioselectivity.